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Numerical Solution of Nth- Order Fuzzy 
Differential Equations by STHWS Method 

S. Sekar and S. Senthilkumar 
 

Abstract— In this paper, we have introduced and studied a new technique namely single term Haar wavelet series (STHWS) for getting 
the solution of Nth – order fuzzy differential equations based on Seikkala derivative with initial value problem [6]. The obtained discrete 
solutions were compared with exact solutions and Runge-Kutta method based on Centroidal Mean (RKCeM). Error graphs are presented 
to highlight the efficiency of the STHWS. 

Index Terms— Fuzzy differential equations, Haar wavelets, Runge-Kutta method, Runge-Kutta method basec on Centroidal mean, Single 
term Haar wavelet series.   
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1 INTRODUCTION                                                                     
Umerical methods to compute solutions of fuzzy differ-
ential equations have already been developed and con-
vergence results proven by Abbasbandy [1] and Du-

raisamy [4 - 5]. However, these methods are no better than 1 st 
order accurate and 1 st order accuracy holds with additional 
assumotions. Further, unless solutions are unique, these 
methods only guarantee that a sub-sequence of the numerical 
solutions converges. Fuzzy differential equations are a natural 
way to medel dynamical systems under uncertainty. First or-
der linear fuzzy differential equations are one of the simplest 
fuzzy differential equations, which appear in many applica-
tions [2 – 3]. The concept of a fuzzy derivative was first intro-
duced by S. L. Chang and L. A. Zadeh. 

STHWS plays an important role in both the analysis and 
numerical solution of differential inclusions. STHWS can have 
a significant impact on what is considered a practical ap-
proach and on the types of problems that can be solved. How-
ever, working with fuzzy differential equations places special 
demands on STHWS codes. In science and engineering, fuzzy 
differential inclusions often have to be solved [7]. Although 
some cases can be solved analytically, the majority of fuzzy 
differential inclusions are too complicated to have analytical 
solutions. Even when analytical solutions can be found, they 
are not always useful in practice since the computational cost 
involved is very high [9]. 

In recent years, there has been an increased interest in 
several methods were arisen to solve the fuzzy differential 
inclusions. STHWS can have a significant impact on what is 
considered a practical approach and on the types of problems 
that can be solved. S. Sekar and team of his researchers [10 - 
16] introduced the STHWS to study the time-varying nonline-
ar singular systems, analysis of the differential equations of 
the sphere, to study on CNN based hole-filter template design, 

analysis of the singular and stiff delay systems and nonlinear 
singular systems from fluid dynamics, numerical investigation 
of nonlinear volterra-hammerstein integral equations, to study 
on periodic and oscillatory problems,  and numerical solution 
of nonlinear problems in the calculus of variations.  

In this paper, we have introduces and studied a new tech-
nique for getting the solution of fuzzy initial value problem. 
The organized paper is as follows: In Section 2, we give some 
basic results on fuzzy numbers and define a fuzzy derivative 
and a fuzzy integral then the fuzzy initial values is treated in 
Section 3 using the extension principle of Zadeh and the con-
cept of fuzzy derivative. It is shown that the fuzzy initial value 
problem has a unique fuzzy solution when f satisfies Lipschitz 
condition which guarantees a unique solution to the determin-
istic initial value problem. In Section 4, the STHWS method for 
solving Nth – order fuzzy differential equations is introduced. 
In Section 5 the proposed method is illustrated by solving sev-
eral numerical examples [6], and the conclusion is drawn in 
Setion 6.  

2 PRELIMINARIES 
An arbitrary fuzzy number is represented by an ordered pair 

 of functions ( ) ( )( )ruru ,   for all r ∈  [0, 1], which satisfy the 
following requirements [12]: 
(i) ( )ru  is a bounded left continuous non-decreasing function 
over [0, 1], 

(ii) ( )ru  is a bounded right continuous non-increasing func-
tion over [0, 1], 

(iii)  ( )ru ≤ ( )ru  ∀ r ∈  [0, 1], 
let E be the set of all upper semi-continuous normal convex 
fuzzy numbers with bounded α-level intervals. 
 

Lemma 2.1 Let ( ) ( )[ ]αα vv , , α ∈  (0, 1] be a given family of 
non-empty intervals. If 

(i) ( ) ( )[ ] ( ) ( )[ ]ββαα vvvv ,, ⊃   for 0 < α ≤ β, 
and 
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(ii) ( ) ( )[ ] ( ) ( )[ ],,lim,lim αααα vvvv kkkk
=

∞→∞→
 

whenever (αk) is a non-decreasing sequence converging to α ∈ 

(0, 1], then the family ( ) ( )[ ]αα vv , , α ∈  (0, 1], represent the α-

level sets of a fuzzy number v in E. Conversely if ( ) ( )[ ]αα vv , , 
α ∈  (0, 1], are α-level sets of a fuzzy number v ∈  E, then the 
conditions (i) and (ii) hold true. 
 
Definition 2.2 Let I be a real interval. A mapping v : I →  E is 
called a fuzzy process and we denoted the α-level set by 

( )[ ] ( ) ( )[ ]ααα ,,, tvtvtv = . The Seikkala derivative ( )tv′  of v 

is defined by ( )[ ] ( ) ( )



 ′′=′ ααα ,,, tvtvtv , provided that is a 

equation defines a fuzzy number ( )tv′  ∈  E. 
 
Definition 2.3 Suppose u and v are fuzzy sets in E. Then their 
Hausdroff D : E × E → R+ ∪ {0}, 

( ) [ ] ( ) ( ) ( ) ( ){ }ααααα vuvuvuD −−= ∈ ,maxsup, 1,0 , 

i.e.,D(u, v) is maximal distance between α-level sets of u and v. 

3 FUZZY INITIAL VALUE PROBLEM 

Now we consider the initial value problem 
( )( ) ( )( )
( ) ( )( ) 
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where ψ is a continuous mapping from R+ ×Rn into R and ai (0 
≤ i ≤ n) are fuzzy numbers in E. The mentioned nth-order fuzzy 
differential equation by changining variables 
y1(t) = x(t), y2(t) = x1(t), . . . , yn(t) = x(n−1)(t), converts to the fol-
lowing fuzzy system 

( ) ( )
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where fi (1 ≤ i ≤ n) are continuous mapping from R+ × Rn into R 
and [ ]0

iy are fuzzy numbers in E with α-level intervals 

 [ ][ ] [ ]( ) [ ]( )[ ]ααα

000 , iii yyy =    for i = 1, . . . , n, and 0 < α ≤ 1. 

We call y = (y1, . . . , yn)t is a fuzzy solution of (2) on an interval 
I, if 
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and ( ) [ ]( ) ( ) [ ]( )αααα
00 ,0,,0 iiii

yyyy ==  

Thus for fixed α we have a system of initial value problem in 
R2n. If we can solve it (uniquely), we have only to verify that 

the intervals, ( ) ( )[ ]αα ,,, tyty jj
 define a fuzzy number 

( ) Etyi ∈ . Now let [ ]( ) [ ]( ) [ ]( )( )t
n

yyy ααα 00
1

0 ,...,=  and 

[ ]( ) [ ]( ) [ ]( )( )tnyyy ααα
00

1
0

,...,= , with respect to the above 
mentioned indicators, system (2) can be written as with as-
sumption 
( ) ( )( )
( ) [ ]





∈=

=′
nEyy

tytFty
00

,,
     (5) 

With assumption ( ) ( ) ( )[ ]ααα ,,,, tytyty =  and 

( ) ( ) ( )[ ]ααα ,,,, tytyty ′′=′  where 

( ) ( ) ( )( )ttytyty ααα ,,...,,, =     (6) 

( ) ( ) ( )( )ttytyty ααα ,,...,,, =     (7) 

( ) ( ) ( )( )ttytyty ααα ,,...,,, ′′=′     (8) 

( ) ( ) ( )( )ttytyty ααα ,,...,,, ′′=′     (9) 
and with assumption 

( )( ) ( )( ) ( )( )[ ]ααα ,,,,,,, tytFtytFtytF = , where 

( )( ) ( )( ) ( )( )( )t
n

tytftytftytF ααα ,,,...,,,,,
1

= ,              (10) 

( )( ) ( )( ) ( )( )( )tn tytftytftytF ααα ,,,...,,,,, 1= ,              (11) 
y(t) is a fuzzy solution of (5) on an interval I for all α ∈ (0, 1], if 

( ) ( )( )
( ) ( )( )
( ) [ ]( ) ( ) [ ]( )
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or 
( ) ( )( )
( ) [ ]( ) 
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Now we show that under the assumption for functions fi, for i 
= 1, . . . , n how we can obtain a unique fuzzy solution for sys-
tem (2). 
 
Theorem 3.1 If fi(t, u1, . . . , un) for i = 1, . . . , n are continuous 
function of t and satiesfies the Lipschitz condition in u = (u1, . . 
. , un)t in the region D = {(t, u)| t ∈  [0, 1], −∞ < ui < ∞ for i = 1, . . 
. , n} with constant Li then the initial value problem (2) has a 
unique fuzzy solution in each case. 
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Proof. See [8]. 

4 SINGLE-TERM HAAR WAVELET SERIES METHOD 
The orthogonal set of Haar wavelets ( )thi  is a group of square 

waves with magnitude of 1± in some intervals and zeros 
elsewhere [12]. In general, 
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Namely, each Haar wavelet contains one and just one 
square wave, and is zero elsewhere. Just these zeros make 
Haar wavelets to be local and very useful in solving stiff sys-
tems. Any function y(t), which is square integrable in the in-
terval [0,1). Can be expanded in a Haar series with an infinite 
number of terms 
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where the Haar coefficients 

( )∫=
1

0

)(2 dtthtyc i
j

i  

are determined such that the following integral square error 
ε is minimized:  

( ) ( )
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usually, the series expansion Equation (10) contains an infinite 
number of terms for a smooth y(t). If y(t) is a piecewise con-
stant or may be approximated as a piecewise constant, then 
the sum in Eq. (10) will be terminated after m terms, that is  

( ) ( ) ( ) ( ) [ ]1,0,)(
1

0
∈=≈ ∑

−

=

tthcthcty m
T
m

m

i
ii             

( ) ( ) [ ] ,... 110
T

mm ccctc −=                                            (11) 

( ) ( ) ( ) ( ) ( )[ ] ,... 110
T

mm thththth −=  

where “T” indicates transposition, the subscript m in the 
parantheses denotes their dimensions. The integration of Haar 
wavelets can be expandable into Haar series with Haar coeffi-
cient matrix P[3].  

( ) ( ) ( ) ( ) ( ) [ ]∫ ∈≈ × 1,0, tthPdh mmmm tt  

where the m-square matrix P is called the operational matrix 

of integration and single-term ( ) 2
1

11 =×P . Let us define [12] 

( ) ( ) ( ) ( ) ( ) ( )tMthth mm
T
mm ×≈ ,                                             

      
and ( ) ( ) ( ).011 thtM =×  Equation (3) satisfies    

( ) ( ) ( ) ( ) ( ) ( ),thCctM mmmmmm ×× =  

where ( )mc  is defined in Equation (11)  and ( ) 011 cC =× .   

5 NUMERICAL EXAMPLES 
To show the efficiency of the STHWS, we have considered the 
following problem taken from [6] and [8], with step size 

1.0=h  along with the exact solutions. The discrete solutions 
obtained by the two methods, STHWS and the RKCeM meth-
ods; the absolute errors between them are tabulated and are 
presented in Table 1 - 4. To distinguish the effect of the errors 
in accordance with the exact solutions, graphical representa-
tions are given for selected values of “ x “and are presented in 
Fig. 1 to Fig. 6 for the following problem, using three dimen-
sional effects. 
 
Example 5.1 Cosider the following fuzzy differential equation 
with fuzzy initial value [6] 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) 
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The exact solution is as follows: 
( ) ( ) ( ) tt tererrty 22 12, −++=      

( ) ( ) ( ) tt tererrty 22 14, −+−=   
 
Example 5.2 Cosider the following fuzzy differential equation 
with fuzzy initial value [6][8] 
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The eigen value – eigen vector solution is as follows: 
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TABLE 1 
EXACT, DISCRETE SOLUTIONS AND ERROR CALCULATION OF  

EXAMPLE 5.1 FOR ( )rty ,  

 
r 

Example 5.1 : ( )rty ,  

Exact 
Solutions 

RKCeM 
Solutions 

RKCeM 
Error 

STHWS 
Solution 

STHWS 
Error 

0  2.563719  2.564946  1.23E-03  2.56372 1E-06 
0.1  2.673767  2.674872  1.10E-03  2.673769 2E-06 
0.2  2.783815  2.784798  9.83E-04  2.783818 3E-06 
0.3  2.893863  2.894725  8.61E-04  2.893867 4E-06 
0.4  3.003912  3.004651  7.39E-04  3.003917 5E-06 
0.5  3.113961  3.114577  6.17E-04  3.113967 6E-06 
0.6  3.224009  3.224503  4.94E-04  3.224016 7E-06 
0.7  3.334058  3.33443  3.71E-04  3.334066 8E-06 
0.8  3.444108  3.444356  2.48E-04  3.444117 9E-06 
0.9  3.554157  3.554282  1.25E-04  3.554167 1E-05 
1  3.664206  3.664208  1.91E-06  3.664217 1.1E-05 

 
TABLE 2 

EXACT, DISCRETE SOLUTIONS AND ERROR CALCULATION OF  

EXAMPLE 5.1 FOR ( )rty ,  

r 
Example 5.1 : ( )rty ,  

Exact 
Solutions 

RKCeM 
Solutions 

RKCeM 
Error 

STHWS 
Solutions 

STHWS 
Error 

0 4.764708  4.763471  1.24E-03  4.764709 1E-06 
0.1 4.654658  4.653545  1.11E-03  4.654659 1E-06 
0.2 4.544607  4.543618  9.89E-04  4.54461 3E-06 
0.3 4.434557  4.433692  8.65E-04  4.434561 4E-06 
0.4 4.324506  4.323766  7.40E-04  4.324511 5E-06 
0.5 4.214456  4.21384  6.16E-04  4.214462 6E-06 
0.6 4.104406  4.103913  4.92E-04 4.104413 7E-06 
0.7 3.994356  3.993987  3.69E-04 3.994364 8E-06 
0.8 3.884306  3.884061  2.45E-04  3.884315 9E-06 
0.9 3.774256  3.774135  1.21E-04  3.774266 1E-05 
1 3.664206  3.664208  1.91E-06  3.664217 1.1E-05 
 

 
Fig. 1. Solution graph for Example 5.1 

 

 
Fig. 2. Error graph for Example 5.1 : ( )rty ,  

 

 
Fig. 3. Error graph for Example 5.1 : ( )rty ,  

 
 

TABLE 3 
EXACT AND DISCRETE SOLUTIONS OF EXAMPLE 5.2 

 

r 

Example 5.2 

Exact Solutions RKCeM  
Solutions STHWS Solutions 

( )rty i ;1  ( )rty i ;2  ( )rty i ;1  ( )rty i ;2  ( )rty i ;1  ( )rty i ;2  
0.1 12.4317  13.0939 12.4313  13.0935  12.4317  13.0939 
0.2 12.4685 13.0571 12.4681 13.0567 12.4685 13.0571 
0.3 12.5053  13.0203 12.5049  13.0199  12.5053  13.0203 
0.4 12.5421  12.9835 12.5417  12.9831  12.5421  12.9835 
0.5 12.5788  12.9467 12.5785  12.9463  12.5788  12.9467 
0.6 12.6156 12.9099 12.6152 12.9095 12.6156 12.9099 
0.7 12.6524  12.8731 12.6520  12.8728  12.6524  12.8731 
0.8 12.6892  12.8364 12.6888 12.8360 12.6892  12.8364 
0.9 12.7260  12.7996 12.7256  12.7992  12.7260  12.7996 
1.0 12.7628 12.7628 12.7624  12.7624  12.7628 12.7628 

 
TABLE 4 
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ERROR CALCULATION OF EXAMPLE 5.2 
 

r 

Example 5.2 
RKCeM Error STHWS Error 
( )rty i ;1  ( )rty i ;2  ( )rty i ;1  ( )rty i ;2  

0.1 0.0004 0.0004 0.0002 0.0002 
0.2 0.0004 0.0004 0.0002 0.0002 
0.3 0.0004 0.0004 0.0002 0.0002 
0.4 0.0004 0.0004 0.0002 0.0002 
0.5 0.0003 0.0004 0.0002 0.0002 
0.6 0.0004 0.0004 0.0002 0.0002 
0.7 0.0004 0.0003 0.0002 0.0002 
0.8 0.0004 0.0004 0.0002 0.0002 
0.9 0.0004 0.0004 0.0002 0.0002 
1.0 0.0004 0.0004 0.0002 0.0002 

 
 

 
Fig. 4. Solution graph for Example 5.2 

 
 

 
Fig. 5. Error graph for Example 5.2 : ( )rty i ;1  

 

 
Fig. 6. Error graph for Example 5.2 : ( )rty i ;2  

6 CONCLUSION 
In this paper, a new numerical method for solving Nth - order 
fuzzy initial value problem is proposed. Here the Nth - order 
fuzzy linear differential equation is converted to a fuzzy sys-
tem which will be solved with the STHWS. From the numeri-
cal examples, we could conclude that the proposed method 
almost coincides with the exact solution and the classical 
fourth order Runge – Kutta method (refer Table 1 - 4 and Fig-
ure 1 - 6).  
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